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The Numerous Caveats of Designing, Implementing, and 
Interpreting Genome-Wide Association Studies 
 
The information to be made available by genome-wide association (GWA) studies has 
long been heralded as the future of healthcare and personalized medicine.  It has been 
suggested that knowledge linking particular DNA sequences to diseases will provide a 
strong foundation for preventative medicine.  GWA studies have already proven 
successful in predicting loci associated with age-related macular degeneration, 
myocardial infarction, and type 2 diabetes [1].  In fact, more than 250 genetic loci that 
contribute to phenotypes observed as diseases or other quantitative traits (traits 
determined by the effect of a number of different loci), such as height, have been 
identified [2].  
 
The general methodology of any association study is to identify the genetic variation 
responsible for a specific disease by looking at the frequency of single nucleotide 
polymorphisms (SNPs) in both disease and control populations.  GWA studies extend 
this methodology to looking at whole genomes rather than just at specific loci of the 
subjects’ genomes [3].  They utilize high-throughput genotyping methods, such as the use 
of SNP chips or high-throughput sequencing methods, to assay hundreds of thousands of 
SNPs and then try to link that data to diseases or other quantitative traits such as height 
[4].  GWA studies have the advantage over other types of association studies in that they 
make no biased decisions as to which genetic loci might be linked to a trait beforehand 
and instead just assay the entire genome; previous methods usually required some 
guesswork about which candidate regions might harbor causal agents [5].  
 
There are still a number of technical issues that need to be overcome with GWA studies, 
and it should be noted that the method itself has a number of inherent limitations.  On the 
technical side, studies are only valuable when the phenotypes of the individuals’ 
genotyped are properly characterized [1].  Additionally, the number of cases and controls 
needed to carry out a successful study is not insignificant: by some estimates, thousands 
of cases and controls are required in order to have a sufficient sample sizes [1].  Also, 
bioinformatics and statistical methods that can adequately deal with such large amounts 
of data, as well as with the arising complexities of the data, are still under development 
[1].  There are a number of caveats to be taken into consideration in the design and 
implementation of these studies and in the analysis of the data from them.  These caveats 
and various options to tackle inherent limitations in GWA studies are the subject of this 
report. 
 
General Methodology of GWA studies 
 



Genome-wide association studies match genetic variation in the form of SNPs in an 
individual’s DNA to a specific disease phenotype or other phenotypic trait (note: from 
here on, I will discuss only linking to disease phenotypes, but it is implied that the same 
methods could always be used to link variants to other quantitative traits).  These studies 
involve genotyping members of a population on the basis of genetic markers that are 
spread throughout the genome, and they rely on using populations that have an 
observable disease phenotype that can be tied back to the presence of specific markers in 
only a subset of the population.  The basic steps of a GWA study are as follows: 1.) 
Define the design of the study and identify disease and control groups, 2.) Genotype the 
members of the disease and control groups, 3.) Employ statistical tests to associate 
diseases with SNP variants, and finally 4.) Replicate the results in an independent 
population or follow up on the mechanism of disease transmission in an experimental 
context in a laboratory [4].  The remainder of this report will be broken up into sections 
related to each of these steps in order to discuss what is involved in each at greater depth 
as well as some potential concerns and issues at each stage of the study. 
 
Defining the Study Design and Selecting Subjects 
 
There is a number of different study designs commonly applied to carry out GWA 
studies.  The most common is the case-control design whereby groups of disease patients 
and disease-free (control) individuals are genotyped, and SNP frequencies compared 
between the groups to identify associations [4].  Other study designs commonly 
employed include the trio design, whereby disease patients are genotyped along with 
their parents to trace inheritance of causal SNPs, and cohort studies, whereby much larger 
groups are genotyped and extensive histories are taken for each member of the group so 
that genetic variants can be linked to a number of different diseases after the fact [4].   
 
Each of these designs has its strengths and weaknesses.  Case-control designs are usually 
cheaper, but carry a high risk for biased results: only individuals actually needing 
treatment for the disease are included in the disease group (as opposed to individuals who 
have a more tolerable form of the disease and are able to go without treatment), subjects 
who in fact have a mild or undiscovered case of the disease could be included in the 
control unknowingly, and it may be difficult to find proper control subjects because of 
population stratification (i.e. finding controls that have similar ethnic or geographical 
backgrounds as the disease group) [4].  Trio designs benefit from having a built in control 
group in the form of unaffected parents usually present within the study.  However, trio 
designs are particularly sensitive to errors in genotyping because they aim at following 
the transmission of variants from parent to offspring; a misgenotyped SNP, in either 
parent or offspring, makes this effort futile [4].  Cohort studies benefit from large 
numbers of individuals to draw proper controls from and they can be used to study 
linkage for multiple conditions; however, they are extremely expensive and data intensive 
to carry out as they typically need to juggle very large numbers of subjects and fairly in 
depth histories of each subject in order to be effective [4].   
 
For all designs though, proper classification of the phenotypes of the individuals is of the 
utmost importance to the success of the study.  Misclassified individuals can reduce the 



ability of the study to draw linkage between a condition and a genetic variant [4].  This is 
true both when an unknown, and potentially large, number of traits is to be assayed in 
cohort studies and when a single trait is assayed in a case-control or trio study.  The 
cohort subjects have a greater number of phenotypes that need to be assayed correctly 
(and it is not always clear which phenotypes those are), but in all cases individuals need 
to be accurately assigned as having a condition or not having it. 
 
Genotyping Subjects 
 
When talking about genotyping subjects, what is really meant is ascertaining which SNPs 
are present in individual subjects.  As discussed in a perspective piece in the New 
England Journal of Medicine by Christensen and Murray (2007), GWA studies are 
greatly facilitated by work from the International HapMap Project.  SNPs closer together 
to one another in genetic distance are more likely to segregate with each other than are 
SNPs that are far apart from one another because of their high degree of linkage 
disequilibrium.  As a consequence of this, GWA studies typically use a subset of the total 
number of SNPs to act as genetic markers.  The SNPs in this subset are typically referred 
to as ‘tagging SNPs’ and they serve as proxies for the presence of other known SNPs that 
are close in genetic distance to the tagging SNP in question.  The International HapMap 
Project identified the relationships between the tagging SNPs and other SNPs such that it 
is now easy to use tagging SNPs in this manner [1].  Thus, tagging SNPs are typically the 
only SNPs needing to be genotyped in the studies, greatly reducing both the cost and 
statistical burden. 
 
Genotyping is frequently a high cost stage for GWA studies and, thus far, primarily SNP 
chips have been used to collect data, though it seems likely that if sequencing technology 
becomes increasingly more inexpensive, it too could be used in the future.  SNP chip 
platforms typically assay between 500,000 to 1,000,000 SNPs, though higher density 
ones can be used to try to pick up copy number variants [4].  A frequently used strategy 
to try to overcome some of the cost concerns and statistical issues is to utilize a 
multistage design.  In such a design, SNPs with disease associations are identified first in 
a GWA study at a set P-value using data from a limited number of samples; this subset of 
SNPs is then subsequently retested with more inexpensive, but limited, technology and 
with more samples [5]. 
 
A chief concern at the genotyping stage is that errors are not made; errors hold the 
potential to confound linkage results.  A number of checks are available to try to identify 
errors in genotyping data.  Among others, these include checking that the alleles picked 
up by the genotyping results do not severely violate Hardy-Weinberg equilibrium or, in 
trio studies, Mendelian inheritance patterns [4].   However, these are after-the-fact 
checks, and great care must be taken in collecting and processing samples to ensure the 
quality of the data and the reliability of the results. 
 
Data Analysis 
 



In the traditional GWA study where single SNPs are linked to a disease, genotypes linked 
to diseases or traits are usually presented as odds ratios (the ratio of the probability of a 
disease occurring in the disease group to the probability of it occurring in the control 
group) or population attributable risks (essentially the degree to which a disease in a 
population can be attributed to the genetic variant in question, which is in part determined 
by the odds ratio) [4].  Odds ratios in GWA studies typically are not very high (they are 
usually on the order of 1.2-1.3), which is indicative of the modest effect of most 
individual disease-linked SNPs’ contribution to their corresponding diseases [4].   
 
Because of the multiple testing carried out in GWA studies, there is a high likelihood of 
false positive results, and, due to the large number of SNPs assayed, a standard p-value of 
.05 is much too high to give stringent results [4].  To compensate for this, researchers 
typically apply the Bonferroni correction, which divides the standard p-value by the 
number of tests performed, in determining the p-value to use [4].  Replication studies in 
independent samples are then needed to identify true- and false-positives [4]. 
 
Confounding Factors in Data Analysis and Methods to Address Them 
 
The traditional analysis of trying to link a single SNP to a single disease is not always 
sufficient to try to understand the causation of a particular disease.  Many biological 
phenotypes are not inherited in a Mendelian fashion, but instead are quantitative traits 
that show great variation in phenotypes and result from the effect of several genes and 
from the impact of the environment on the individual [3].  GWA studies are set up better 
to analyze the contribution of individual SNPs to diseases or traits rather than the 
contribution of multiple SNP’s combined impact.  However, a number of groups have 
recently developed bioinformatics strategies to identify such effects.  A few of these 
methods, but by no means all, are discussed below. 
 
Pathway-Based Approaches 
 
It is likely that a number of SNPs that affect genes in the same pathway have epistatic 
interactions and that all of these SNPs contribute in part to the development of a 
particular disease.  To get at this problem of identifying multiple SNPs affecting different 
genes in a pathway, groups have employed what is called a pathway-based approach [6, 
7].  The approach involves comparing GWA results to a null distribution derived by one 
of various permutation methods in order to identify pathways that are enriched in the 
sample analysis [6, 7].   
 
Three different bases of permutation for developing the null distribution have been 
proposed in the literature: sample randomization, gene randomization [7], and SNP 
randomization [6].  Each has its strengths and weaknesses as discussed in Guo et al. 
(2009) Sample randomization, whereby phenotypes present in the sampled population are 
shuffled and association statistics are recalculated appears to be the gold standard as this 
method preserves genome architecture and linkage disequilibrium.  It is however 
computationally intensive.  Gene randomization, whereby gene statistics are shuffled 
over the genome and association statistics recalculated, is much less computationally 



intensive but also carries issues due to only genic regions and not the entire genome 
being used to generate the null data set.  The SNP randomization method is largely 
similar to the gene randomization method, however it allows for genetic effects to occur 
throughout the genome and not just in genes, and it better takes into account the effect of 
having differing numbers of SNPs within single genes [6].  Both the gene and SNP 
randomization methods might potentially have issues due to breaking linkage 
disequilibrium structure in generating the null, however it is thought that this difficulty 
can be overcome by increasing the number of permutations.  Thus, the SNP 
randomization method appears to offer the best option for both a computationally friendly 
and relatively accurate method [6]. 
 
An Example of A Learning Based Approach 
 
Another method that is sometimes used to handle the issue of identifying epistatic 
interactions in genome-wide association studies is the learning based approach, an 
example of which is the SNPRuler [8].  The basic method of the SNPRuler approach 
involves two steps.  In the first, a rule-searching algorithm searches genome-wide data 
for potential interactions by looking for possible rules contained within suspected 
interactions.  The second step involves using a χ2 test to evaluate the SNPs identified as 
representing potential epistatic interactors and to rule out false positives from the first 
step [8].   
 
The SNPRuler method is advantageous in that it is not computationally intensive, and the 
rule learning algorithm isn’t as sensitive to marginal effects of individual SNPs as some 
other methods are [8].  The SNPRuler is limited however to detecting epistatic 
interactions that have clear rules that can be learned by the algorithm [8].   
 
Use of Previous Biological Knowledge 
 
Clearly, handling multiple SNPs that have epistatic interactions in conferring 
susceptibility to disease or quantitative traits is going to be a strong focus for the 
bioinformatics community for some time to come as different strategies are developed 
and tested to do so.  It has also been pointed out that such analysis can potentially benefit 
greatly from the use of previous biological knowledge to narrow down which SNPs to 
test for epistasis: information about biochemical pathways, Gene Ontology (GO) terms, 
protein-protein interactions etc… all can be used to narrow down which SNPs are likely 
to have epistatic interactions [9].  Doing so obviously reduces the unbiased character of 
GWA studies by again assuming candidate loci, and such efforts would only be helpful to 
the extent that the biological information used is accurate and complete, but it could still 
make processing the data much simpler while still offering a high likelihood for 
significant results. 
 
Other Inherent Issues in GWA Studies 
 
The difficulty in easily identifying epistatic interactions is only one limitation of GWA 
studies.  There are numerous others, due to the studies’ designs, that also need to be kept 



in mind.  One such example is that there are a number of cases where the gene impacted 
by the mutation may be difficult to identify, even in cases where the SNP can be mapped 
by a genome-wide association study: notably, this is likely to be the case when the 
mutation lies in a regulatory element for a gene (as regulatory elements themselves are 
not always readily identifiable or able to be linked directly to a particular gene of interest) 
[3].  In fact, it appears as though most SNPs linked to diseases or traits by GWA studies 
do not lie within coding regions of genes, but instead lie in regions that are more likely to 
affect either transcriptional regulation, RNA stability or splicing and translation 
efficiency [10].  With any of these types of SNPs, expression studies may also be needed 
to verify that the SNPs linkage to disease is due to its impact on the expression of a 
particular gene [10]. 
 
Copy number variation in response to genetic variation also represents a potential issue, 
though as previously mentioned in the section on genotyping, genotyping methods are 
getting better at dealing with copy number variants [4].  GWA studies also make the 
assumption that common diseases are caused by common variants in the population that 
will be detectable at a reasonable level; they are much less efficient at identifying rare 
variants that could be responsible for disease [4].  There could be many rare alleles of the 
same gene that all contribute to the same disease, which would be much more easily 
identified by studies in families [1]. 
 
And GWA studies, as currently carried out, do not look at the contribution of epigenetic 
variation [10].  As findings from GWA studies have shown that a number of SNPs 
contributing to disease and traits tend to impact gene expression, and since epigenetic 
regulation has a strong influence on gene expression, it makes sense that epigenetic 
variation is likely responsible for a large amount of the disease contribution unaccounted 
for by current GWA studies.  New methods will need to be developed to look at 
epigenetic regulation efficiently on a genome-wide scale. 
 
Replication of Results 
 
There is often difficulty in reproducing results from these studies.  Population 
stratification issues frequently come into play, especially since at times replication studies 
might be carried out with similar phenotypes in populations that are inherently different 
from that of the original study, in terms of ethnicity or geography [4].  As previously 
mentioned, genotyping errors can cause difficulties, particularly in trio design studies, 
and may make results difficult to reproduce [4].  Additionally, differences in measuring 
and identifying the phenotype linked to the variants between studies can cause great 
challenges to reproducibility of results [4]. 
 
Replication of results in subsequent independent studies is obviously important and 
hopefully with time (and better technology, techniques, experimental setups, etc…) 
success rates of doing so will improve.  Another option to verify results of a particular 
linkage study though is to also verify the linkage functionally in the laboratory [4].  
Researchers can of course tease out mechanisms that lead from individual SNPs to a 
disease phenotype, by determining which protein is affected by the mutation (either the 



protein itself or its level of expression) and then figure out what happens in cells or model 
organisms as a result of that change.  Doing so is a viable verification alternative to 
repeated GWA studies. 
 
Expert Outlooks on the Future Contributions of GWA Studies 
 
David Goldstein, the director of the Center for Human Genome Variation at the Institute 
for Genome Sciences and Policy at Duke University, recently described a number of 
issues with GWA studies and where he feels they can prove to be useful in the future in a 
published perspective piece in the New England Journal of Medicine (2009) [11].  He 
pointed out that most SNP variants linked to variation in quantitative trait phenotypes are 
responsible for only a small fraction of that variation.  He demonstrated that, assuming 
the variants that have the largest effect have been discovered by initial GWA studies, tens 
of thousands of additional common variants would need to be discovered in order to 
explain most of the variation in phenotype, and most of those would each contribute a 
minor amount to the phenotype [11].  Thus there is a built in system of diminishing 
returns to carrying out such studies.   
 
He, however, also argues that additional GWA studies might be very useful if they aim at 
identifying variants that play a role in drug responses or susceptibility to infectious agents 
[11].  He also argues that, because most common variants don’t account for the total 
variation we see in phenotypes, there could be rare variants that play a bigger role and 
that more attention should be focused on identifying them [11].  He points out that the 
rare variants will be more difficult to identify and their identification will require 
identifying prime populations to genotype and greater sequencing efforts [11]. 
 
A contrasting opinion from Joel Hirschhorn, Associate Professor of genetics at Harvard 
Medical School, was also published in the same issue of the New England Journal of 
Medicine (2009).  In it, Hirschhorn addresses concerns that GWA studies may end up 
yielding too many loci and loci that are not biologically significant by pointing out that 
there has already been a number of findings from GWA studies that validate their use: 
GWA studies identifying loci implicated in traits such as lipid levels and type 2 diabetes 
turned up a significant number of implicated genes that were known to play a role in both 
of those pathways [2].  Thus, by turning up positive controls within data sets, the studies 
are validating their continued use. 
 
Concluding Remarks 
 
It seems clear from the various caveats discussed in this review that the design and 
implementation of these studies is both a work in progress, and even under the best of 
circumstances an uncertain matter.  A number of decisions have to be made as to how to 
set up and carry out these studies.  Which design should be used?  Which subjects should 
be selected and what information should be collected from them?  Which genotyping 
platform should be used?  Should a multistage design be used and if so, how should it be 
implemented?  How should the data be analyzed?  Should SNPs be tested for epistatic 
interactions, and if so, which statistical or computational method should be used to do so?  



These are just a handful of the questions that researchers have to ask themselves in 
designing and carrying out these experiments: questions that do not necessarily have 
clear-cut best answers at the moment.  It seems likely that as technology becomes more 
inexpensive and more studies and larger studies become feasible, reproducibility of 
results will improve.  And the continued development of computational approaches to 
handle the data will improve the quality of associations drawn from the studies. 
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